
ProServer installation guide 1

ProServer installation guide

This short guide will describe how to install the ProServer Perl DAS server on a Unix-type system. It will
also give the basics on how to write a source adaptor (or “plug-in”) for ProServer and how to modify the
the ProServer code itself to provide some more customised fields in the response to some DAS request1.

Most shell examples assumes that you are using a sh-type shell, such as sh, ksh, or bash.

Please note that the latest version of ProServer (version 2) look and function slightly different from what is
described here due to recent updates made by the ProServer author, Roger Pettett. It is my intention to
update this document to be in sync with the latest version of the software and to note any incompatibilities
introduced between releases. For now though, the version described in this document is version 1 of the
server.

1. Getting and unpacking the ProServer distribution
• Get the ProServer distribution tar archive from

http://www.sanger.ac.uk/proserver/ProServer-1.tar.gz

It is also available as part of the Bio-Das2 CVS module on the cvs.biodas.org CVS server,
but so is a lot of other things, and it is not easy to untangle the server from there unless you know
what you’re doing, and that the HEAD revision of the code might differ considerably from what is
described in this document.

See

http://cvs.biodas.org/

for information on how to check out the Bio-Das2 module, if you’re interested.

• Unpack the tar archive with

$ tar xvzf ProServer-1.tar.gz

If you are using a tar program that does not understand the z flag (like the native one on Tru64 for
example), instead use

$ gzip -d -c ProServer-1.tar.gz | tar xvf -

This will create a directory called ProServer with a number of subdirectories.

2. ProServer distribution layout
These are the most important parts of the distribution:

ProServer-1/
|
+---eg/
|
‘---ProServer/

|
‘---SourceAdaptor/

|
‘---Transport/

1. Thanks to Stefan Gräf for input on this part!



2 ProServer installation guide

• The eg directory contains the actual ProServer executable, and the configuration file.

• The ProServer directory (somewhat confusingly the same name as the top level directory of the
tar archive) contains the Perl modules used by the DAS server.

• The SourceAdaptor subdirectory contains the source adaptor modules, and the Transport
directory below it contains the transport modules that are used by some of the source adaptor
modules. More on those later.

• The Bio and Das symbolic links that you might notice is just a workaround to avoid a deep
directory hierarchy since the namespace for the ProServer Perl modules actually is
Bio::Das::ProServer::. Ignore them.

3. Before starting ProServer for the first time
Before starting the server you will most likely have to modify a few things in the main executable
ProServer script in the eg directory.

• If the script is not executable, you should make it so:

$ chmod +x proserver

• Modify the path after the #! on the first line of the script so that the correct Perl interpreter is used.
On my private machine where Perl is installed as /usr/bin/perl, for example, I need to modify
the first line of the script into

#!/usr/bin/perl -Tw

• Modify the use lib line a bit further down so that it reads

use lib qw( .. );

(That’s two dots in parenthesis.) Alternatively, provide the absolute path to the ProServer
subdirectory of the server distribution.

If you have installed Perl modules in non-standard locations, you might also want to add these to the
list of directories to search. For example:

use lib qw( ..
/home/user/ensembl-cvs/ensembl/modules
/home/user/ensembl-cvs/ensembl-compara/modules );

One way to figure out what extra Perl modules need installing is to start the server. Do this by going to the
eg directory and say

$ ./proserver

If the server dies with a message starting with

Can’t locate some/module.pm [...]

then see to that the missing module is installed and that it is found by the Perl interpreter.

Some module that are not commonly found in a default Perl installation are the Config::IniFiles,
HTTP::Daemon, and Compress::Zlib modules. It is common to want to serve data from MySQL
databases with ProServer. To do this you also need to find the DBI and DBD::mysql modules. All these
modules are available from CPAN, but if your OS distribution provides them as native packages, then it is
highly recommended to install them from there instead.



ProServer installation guide 3

4. Starting the server for the first time (with no data)
Once all the needed modules are installed, but before you try to modify any adaptors or configuration files,
start the server to see what happens.

Move to the eg directory and type

$ ./proserver

If everything is ok, this will start the server in the background and return you to the command prompt.

ProServer is a self-contained server, meaning that it doesn’t rely on Apache, Tomcat or any other type of
service to handle connections.

The server listens by default to port 9000, but this can be changed to any other free port. It also starts up
five child processes that takes turns to answer requests arriving on the port. This is so that the server can
answer multiple requests in parallel. Each child, however, only handles ten request, it is then killed and
respawned by the parent process. This way ProServer avoids potential memory leaks and keeps it from
potentially blocking resources from other processes. The number of child processes, and the number of
request that each child process should handle, is configurable as well.

You will find the process ID (PID) of the server in a file named

proserver.$(hostname).pid

This means that you can kill the server with the command

$ kill $(<proserver.$(hostname).pid)

The log messages produced by the server are written to the file

proserver.$(hostname).log

The following is the full log file after starting and stopping ProServer on a machine called
shibito.local. No changes were made to the original configuration file.

Proserver v1.5 startup...
Listening on host:port shibito.local:9000
Started 5 child servers
Wrote parent PID to ./proserver.shibito.local.pid [PID: 21738]
Please contact this server at this URL: http://shibito.local:9000/
Killing children...
Received SIGTERM. Clean child 7073 exit
Received SIGTERM. Clean child 26664 exit
Received SIGTERM. Clean child 29617 exit
Received SIGTERM. Clean child 2918 exit
Received SIGTERM. Clean child 12720 exit

5. Server and adaptor configuration (ini-files)
ProServer uses conventional “ini-files” for holding its configuration. By default, the configuration file
named proserver.ini will be read, but this can be changed by using the -c flag when starting the
server2:

$ ./proserver -c myconfig.ini

Like all ini-files, the configuration file is divided into named sections. Configuration options within each
section consists of key–value pairs. The section named [general] is used for server options, while all
other sections are used for the individual data sources that are served from the server.

2. Note that the latest version of ProServer require the use of this command line switch.



4 ProServer installation guide

The most common options used in the [general] section are

prefork
The number of child processes that should be maintained for serving parallel requests. If the server is
serving a large number of data sources, or to a large number of users, this value may need to be
increased from the default of fiv e.

maxclients
The number of requests that each child process should handle before being killed and respawned. The
default value for this setting is ten, and can probably be raised.

port
The port number that the server will listen to. The default port is port 9000, but any free port above
1024 will do.

logfile and pidfile
These gives you the option to explicitly give a name for the log file and/or PID file. If you are running
multiple servers from one and the same directory on one machine, then you will want to use these.
Otherwise you will get file name conflict between the running servers.

Each data source has its own configuration section, with the section name defining the data source name.
The two configuration options that needs to be defined for each data source are

state
This is either on or off depending on whether the source will be active or turned off.

adaptor
This should be the name of the adaptor used by the data source (see later). The name will be
prepended with the string Bio::Das::ProServer::SourceAdaptor:: to form the name of a
Perl package.

mapmaster
The “map master” is an URL pointing to the reference DAS server for this annotation server. A
reference server is a DAS server that is able to provide sequence data (as a response to the sequence
or dna requests) and that knows about the top-level structures in the reference assembly (accessible
using the entry_points request). The reference server for an annotation server holds the reference
sequence and assembly that is annotated by the annotation server. The “map master” on the reference
server itself is the server itself.

Additional configuration options may be added to the configuration section of a data source if needed by
either the source adaptor module or by the transport module. For example, the dbi transport module
(handles connections to Perl DBI databases such as MySQL) may be used by setting the transport
configuration option to dbi and then also specifying values for the host, username, dbname,
driver, and optionally the port and password options.

The ProServer distribution comes with a predefined configuration file that may be used as an example on
how to configure a number of the available source adaptors and transports.

The values for a configuration option is available to the source adaptor in a straight-forward manner. To get
the value for the option myoption, the code within the source adaptor module only needs to say

my $optvalue = $self->config()->{’myoption’};

where $self is a reference to the current source adaptor object.

The following is the (slightly modified) full configuration for the textmining data source served by the
DAS server located at

http://www.ebi.ac.uk/das-srv/genedas/das

which, if given a HUGO ID of a gene, serves text fragments from PubMed abstracts which has been text-
mined by a group at the EBI:



ProServer installation guide 5

[textmining]
state = on
adaptor = textmining
transport = dbi
; transport specific setting:
driver = mysql
host = mysql-ensembl1.ebi.ac.uk
port = 3034
username = someuser
password = somepassword
dbname = textmining
; adaptor specific settings:
maxfragments = 100

6. About source adaptors and transports (the way things work)
One single DAS server may serve multiple data sources. With ProServer, a data source is always
configured to use one source adaptor. A source adaptor is a Perl module that knows how to handle the data
source-specific parts of a DAS request, such as fetching the features on, or sequence of, a segment
(chromosome, clone or similar) from the underlying database given the name of the segment and possibly
the range on the segment.

The Perl module which implements a source adaptor should always inherit from the ProServer module
Bio::Das::ProServer::SourceAdaptor (hereafter referred to as just SourceAdaptor) and
must lie in the Bio::Das::ProServer::SourceAdaptor:: namespace, i.e. an adaptor called
dbadaptor should be placed in the Bio::Das::ProServer::SourceAdaptor::dbadaptor
package.

The SourceAdaptor module contains stubs for a number of methods (subroutines) that will be called
depending on what DAS request the DAS client makes. It is up to the source adaptor to override the
methods that corresponds to the DAS requests that should be supported by the adaptor.

6.1 Source adaptor methods and DAS requests

The methods in the SourceAdaptor module that may be overridden by the adaptor and the DAS
requests that they correspond to are the following (we only describe the method corresponding to the
features request in full detail as it is by far the most commonly used one):

build_features
Corresponds to the features DAS request.

The method receives a reference to a hash containing the keys segment, start, and end. The
segment key will, as its value, contain the name of the segment for which the request was made.
Depending on the client that the DAS server was attached to, this might be the name of a chromosome,
a contig, a scaffold, or some other type of large assembly structure. It might also be the name or ID of
a protein or gene if the server was attached to a ProteinDAS or GeneDAS client. We will not discuss
the possible problems with various coordinate systems and assemblies here.

The start and end keys might not exist, but if they do then any feature overlapping the region that
they define on the named segment should be returned. If they are not provided, then features present
anywhere on the named segment should be returned.

The return value from the build_features method should be a list (not a list reference) of
features. Each feature is a reference to a hash with a set of special key–value pairs closely
corresponding to the XML tags of the response to the features DAS request (see the DAS
specification).



6 ProServer installation guide

The names of the most commonly used keys are

id The unique ID of the feature.

type The type of annotation (required).

method The method of annotation used (required).

start The start position of the feature on the named segment (required).

end The end position of the feature on the named segment (required).

score A similarity score, or some value that shows the significance of this feature in the context of
the method used for arriving at the annotation.

ori The orientation of the feature (+, -, or 0) (required by the DAS specification, but ProServer
will default to 0).

note A note (optional).

link A URL to a web resource containing further information, ideally about this feature in
particular (optional).

Have a close look at the das_features method of the SourceAdaptor module for further
possibilities, default values, and for how the various values are used to build the XML response to a
DAS features request.

sequence
The method gets called for the DAS dna and sequence requests.

The method receives a named segment and an optional range on that segment in the same way as the
build_features method does, and it is assumed to return a reference to a hash containing the two
keys moltype and seq. The sequence is stored as the value of the seq key, and the molecular type
is stored as the value for the moltype key.

Note that it is only reference DAS servers that needs to provide the ability to serve sequence.

build_types
This method corresponds to the types DAS request.

As for most of the other methods, the build_types method receives a segment and a range, but for
this DAS request, these are optional. When no segment is supplied, the DAS server is required to
return all available types.

The reply should be a list of references to hashes. Each hash consist of the keys type, method, and
category. These have the same meanings as specified in the DAS specification (the type key
corresponds to the id attribute of the TYPE tag). There is also a count key which, as its value,
should contain the number of features of this type on the segment in question.

build_entry_points
This method takes care of the entry_points DAS request.

The method should return a list of entry points. Each entry point is a reference to a hash containing
the keys segment and length. The segment key should, as its value, have the name of a valid
segment, and the length of the segment should be stored as the value for the length key.

stylesheet
This method should return a string containing the XML for a DAS stylesheet when requested by the
stylesheet DAS request.

No interpretation is made of the returned XML data by the rest of the ProServer code.

Have a closer look at the SourceAdaptor module for more on how these methods are called and how
the XML is being created from the data returned from them.



ProServer installation guide 7

6.2 Initialising a source adaptor

In addition to overriding one or more methods from the SourceAdaptor module, all source adaptors
must implement a method named init which is called once before the adaptor is handed any DAS
requests and which modifies the capabilities attribute of the source adaptor object so that it reflects
the capabilities provided by the adaptor. The capabilities are simple key–value pairs with the capability
name as the key and the capability version (as defined by the DAS specification) as the value. See the
example code further down for an example of this.

The init method may also do any additional tasks that might be required to set up the adaptor. If
additional data needs to be stored in the source adaptor object, such as possibly large objects that only
needs to be allocated once during the life-time of the adaptor object, this data should be stored in a separate
private attribute. The name _private does not collide with any already existing attributes in the source
adaptor object. The following is an example of this where a fairly standard cache module is used to provide
an adaptor with the possibility to use a file cache for caching results:

$self->{’_private’}{’cache’} = Cache::FileCache->new(
{

’namespace’ => ’myadaptor’,
’default_expires_in’ => 12 * 3600, # 12 hours
’auto_purge_interval’ => 600, # 10 minutes
’auto_purge_on_set’ => 1,

}
);

6.3 Transports

A ProServer source adaptor is free to include the Perl DBI module to set up a connection to a database, and
then to query that database from its build_features method by preparing and executing SQL queries,
but it is also possible to use an already existing transport module instead to achieve the same effect.

A transport module, such as the dbi transport for MySQL etc. or the getz transport for SRS, hides the
setting up and querying of the underlying database.

We hav e already shown an example of how to configure a source adaptor to use a transport. In the source
adaptor code, the transport is then available and may be use in the following manner:

my $transport = $self->transport(); # get dbi transport
my $statement = qq( SQL QUERY TEXT ); # specify a query
my $rows = $transport->query($statement); # perform query

This example assumes that we’re using the dbi transport and that SQL QUERY TEXT is the statement
that we want to execute against the database to get the data needed to build the requested features. The
returned value from the query method of the dbi transport is the same as from the Perl DBI method call

$sth->fetchall_arrayref({ });

where $sth is a Perl DBI statement handler. This means that for this particular source adaptor, it is a
matter of looping over the rows to build the array of features:



8 ProServer installation guide

my @features = ();

foreach my $row ( @{$rows} ) {
my $feature = {

# Pull fields out from the $row hash
# reference into the appropriate keys of
# the $feature hash reference.

};
push @features, $feature;

}

# ...

return @features;

When using DBI, one can avoid “SQL injection attacks” (where a program is tricked into executing
malignant SQL code) by using the quote() method of that package:

my $transport = $self->transport();
my $quoted_segment = $transport->dbh()->quote($segment);

We’ll say nothing more about this here, but you should be aware that blindly trusting user-supplied data
might be a bad idea. In the DAS context, this means every part of the segment (segment name, start, and
stop). The example code on the following pages uses this safe-guarding mechanism were appropriate.



ProServer installation guide 9

7. Writing a source adaptor (simple example)
The following code is the full implementation of mysimpledb, a variation of the simpledb source
adaptor module that is available in the ProServer distribution. It assumes that it has access to a MySQL
database containing a table with the columns segmentid, featureid, start, end, type, method,
note, and link. The name of the database table is configurable (see later).

The adaptor implements the features DAS request by overriding the build_features method, and
the types request by overriding the build_types method from SourceAdaptor. Any feature
overlapping the requested region on the segment will be returned (the simpledb adaptor in the ProServer
distribution only returns features contained within the region). If no range is requested, all features on the
segment are returned.

package Bio::Das::ProServer::SourceAdaptor::mysimpledb;

use strict;
use warnings;

use base qw(Bio::Das::ProServer::SourceAdaptor);

sub init {
my ($self) = @_;
$self->{’capabilities’}{’features’} = ’1.0’;
$self->{’capabilities’}{’types’} = ’1.0’;

}

sub build_features {
my ( $self, $args ) = @_;

my $segment = $args->{’segment’} || return ();
my $segment_start = $args->{’start’};
my $segment_end = $args->{’end’};

my $dbtable = $self->config()->{’dbtable’} || return ();

my $transport = $self->transport();
my $dbh = $transport->dbh();

my $bounds_part = ’’;

if ( defined($segment_start) && defined($segment_end) ) {
my $quoted_segment_start = $dbh->quote($segment_start);
my $quoted_segment_end = $dbh->quote($segment_end);

$bounds_part = qq(
AND ((start >= $quoted_segment_start
AND start <= $quoted_segment_end)
OR (end >= $quoted_segment_start
AND end <= $quoted_segment_end))

);
}
# (continued on the next page)



10 ProServer installation guide

# (continued from the previous page)

my $quoted_segment = $dbh->quote($segment);
my $query = qq(

SELECT featureid, start, end, type, method, note, link
FROM $dbtable
WHERE segmentid = $quoted_segment
$bounds_part

);

my $rows = $transport->query($query);
my @features = ();

foreach my $row ( @{$rows} ) {
push @features, {

’id’ => $row->{’featureid’},
’start’ => $row->{’start’},
’end’ => $row->{’end’},
’type’ => $row->{’type’},
’method’ => $row->{’method’},
’note’ => $row->{’note’},
’link’ => $row->{’link’}

};
}
return @features;

}

sub build_types {
my ( $self, $args ) = @_;

my $segment = $args->{’segment’};
my $segment_start = $args->{’start’};
my $segment_end = $args->{’end’};

my $dbtable = $self->config()->{’dbtable’} || return ();

my $transport = $self->transport();
my $dbh = $transport->dbh();
my $bounds_part = ’’;
my $segment_part = ’’;

if ( defined $segment ) {
my $quoted_segment = $dbh->quote($segment);
$segment_part = "WHERE segmentid = $qouted_segment";

if ( defined($segment_start) && defined($segment_end) ) {
my $quoted_segment_start = $dbh->quote($segment_start);
my $quoted_segment_end = $dbh->quote($segment_end);

$bounds_part = qq(
AND ((start >= $quoted_segment_start
AND start <= $quoted_segment_end)
OR (end >= $quoted_segment_start
AND end <= $quoted_segment_end))
);

}
}
# (continued on the next page)



ProServer installation guide 11

# (continued from the previous page)

my $query = qq(
SELECT COUNT(*) AS ’count’, type, method
FROM $dbtable
$segment_part
$bounds_part
GROUP BY type, method

);

my $rows = $transport->query($query);
my @types = ();

foreach my $row ( @{$rows} ) {
push @types,

{
’type’ => $row->{’type’},
’method’ => $row->{’method’},
’count’ => $row->{’count’}

};
}

return @types;
}

1;

This code goes into a file called mysimpledb.pm which is then put within the SourceAdaptor
subdirectory of the ProServer distribution, or into some other place where the Perl interpreter might find it.

The configuration of a server that wants to include a source using this adaptor might look like this:

[mysource]
state = on
adaptor = mysimpledb
transport = dbi
; transport specific setting:
driver = mysql
host = thedbhost.example.com
port = 3034
username = someuser
password = somepassword
dbname = dasdb
; adaptor specific settings:
dbtable = das_features7

8. Modifying the VERSION of a SEGMENT
Within the BioSapiens project (see www.biosapiens.info), we decided that all DAS servers that
annotate the UniProt knowledge base should provide the MD5 checksum of the protein sequence that was
annotated. This makes it easy for a protein DAS client to determine if the annotations from a certain DAS
server are out of date or not.

The way we decided to do this was for each protein DAS server to modify the VERSION attribute of the
SEGMENT tag in the XML reply to each DAS request from a client. This probably only makes sense to
you if you know something about the XML that makes up a standard DAS feature reply, but ProServer
makes it relatively easy to implement, even if you don’t.



12 ProServer installation guide

The SourceAdaptor module contains a stub for a method called segment_version which receives
the name of a segment (the UniProt accession number) as an argument and which is supposed to return the
version of the segment as a simple string.

The idea is to let the source adaptor overload the segment_version method, and from it return the
MD5 checksum of the protein that was used to arrive at the annotation. An overriding implementation of
this method in a source adaptor might possibly look something like this (assuming, among other things, that
the MD5 checksum has already been calculated and stored in a database):

sub segment_version
{

my ( $self, $segment ) = @_;

my $dbtable = $self->config()->{’dbtable’};

my $transport = $self->transport();
my $dbh = $transport->dbh();

my $quoted_segment = $dbh->quote($segment);

my $query = qq(
SELECT checksum
FROM $dbtable
WHERE accession_number = $quoted_segment

);

my $rows = $transport->query($query);

return $rows->[0]->{’checksum’};
}

9. Adding more attributes to the XML response
Another thing we would like to do within the BioSapiens project, since it is such a large project with many
diverse data sources each defining its own annotation types, is to introduce a category_ontology
attribute (which would be a URL pointing to a proper ontology, such as SO or GO, used in the existing
category attribute), an evidence attribute (which would be e.g. a GO evidence code), and a
evidence_ontology attribute (which would point to the ontology used for the evidence attribute).
These would all be new attributes in the reply from the types request.

Doing this involves changes in two places:

1. in the adaptor that pulls the relevant data from the underlying data source, and

2. in the ProServer code that generates the XML reply.

9.1 Modifying the adaptor

The first of these two changes is the most straight forward. We simply need to add the appropriate keys to
the hashes that we send back from the build_types method within the adaptor module. Using the
example adaptor from earlier in this document, the code that needs changing is this:



ProServer installation guide 13

sub build_types
{

# Begins as before...

foreach my $row ( @{$rows} ) {
push @types,
{
’type’ => $row->{’type’},
’method’ => $row->{’method’},
’count’ => $row->{’count’}

};
}

return @types;
}

Now, we change this into

sub build_types
{

# Begins as before...

foreach my $row ( @{$rows} ) {
push @types,
{
’type’ => $row->{’type’},
’method’ => $row->{’method’},
’count’ => $row->{’count’},
’category’ => $row->{’category’},
’c_ontology’ => ’http://song.sourceforge.net/so.shtml’,
’evidence’ => $row->{’evidence’},
’e_ontology’ =>
’http://www.geneontology.org/GO.evidence.shtml’

};
}

return @types;
}

The only thing we’ve done here is to add more key-value pairs to the hash. Of course, the query into the
database needs to be changed and the data in the database should include the GO evidence code for each
type and the SO term for each category as well as the category itself. We’re assuming that the ontologies
will be constant.

The category key is already standard, so we need not do anything about that in our next step, but the
ProServer framework does not know about the three new keys that we’ve used and would ignore them
completely and nothing would be gained from adding them here unless we change the SourceAdaptor
module.

9.2 Modifying ProServer internals

The SourceAdaptor module consists of various methods that first of all gets the request from the client
(the genome or protein browser) via the Daemon module, and then interacts with the adaptor module to
create an XML document that gets sent back to the client.

The interesting method in this module is the das_types method. It calls the build_types method in



14 ProServer installation guide

the adaptor and from the data it receives from there builds the resulting XML document using simple
print statements.

The part of the method that we will be modifying is the last XML-building step (here beautified a bit, and
some long lines has been broken up):

for my $type ( @{ $data->{$seg} } ) {
$type->{’count’} ||= "";

my $method = qq(method="$type->{’method’}")
if ( defined $type->{’method’} );

my $category = qq(category="$type->{’category’}")
if ( defined $type->{’category’} );

$response .=
qq(<TYPE id="$type->{’type’}")

. qq( $method $category>$type->{’count’}</TYPE>\n);
}
$response .= qq( </SEGMENT>\n);

We just follow the same pattern when adding our new attributes:

for my $type ( @{ $data->{$seg} } ) {
$type->{’count’} ||= "";

my $method = qq(method="$type->{’method’}")
if ( defined $type->{’method’} );

my $category = qq(category="$type->{’category’}")
if ( defined $type->{’category’} );

my $c_ontology = qq(category_ontology="$type->{’c_ontology’}")
if ( defined $type->{’c_ontology’} );

my $evidence = qq(evidence="$type->{’evidence’}")
if ( defined $type->{’evidence’} );

my $e_ontology = qq(evidence_ontology="$type->{’e_ontology’}")
if ( defined $type->{’e_ontology’} );

$response .=
qq(<TYPE id="$type->{’type’}")

. qq( $method $category $c_ontology $evidence $e_ontology>)

. qq($type->{’count’}</TYPE>\n);
}
$response .= qq( </SEGMENT>\n);



CONTENTS

1. Getting and unpacking the ProServer distribution ............................................................................... 1

2. ProServer distribution layout ............................................................................................................... 1

3. Before starting ProServer for the first time ......................................................................................... 2

4. Starting the server for the first time (with no data) .............................................................................. 3

5. Server and adaptor configuration (ini-files) ......................................................................................... 3

6. About source adaptors and transports (the way things work) .............................................................. 5
6.1 Source adaptor methods and DAS requests .................................................................................. 5
6.2 Initialising a source adaptor .......................................................................................................... 7
6.3 Transports ..................................................................................................................................... 7

7. Writing a source adaptor (simple example) ......................................................................................... 9

8. Modifying the VERSION of a SEGMENT ....................................................................................... 11

9. Adding more attributes to the XML response ................................................................................... 12
9.1 Modifying the adaptor ................................................................................................................ 12
9.2 Modifying ProServer internals ................................................................................................... 13

Author: Andreas Kähäri, andreas.kahari@ebi.ac.uk

Document revision and date:

$Revision: 1.24 $

$Date: 2006/09/27 09:25:23 $


